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Autonomous Hamiltonian systems

Consider an N degree of freedom autonomous
Hamiltonian system having a Hamiltonian function of the
form: N

L,
H(q,p) =5 ) _»i +V(d)

s

=1
with 7= (q1(t), q2(t), ..., qn(t)) P= (p1(t), p2(t), ... pN (1))

being respectively the coordinates and momenta.

The time evolution of an orbit is governed by the
Hamilton equations of motion

g=7p
- %
P=——3
dq
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Variational Equations

The time evolution of a deviation vector

@(t) = (8q1(1), 8q2(1). ..., 0q (1), 3pi(t). 6pa(1), ... Spw (1))
from a given orbit is governed by the so-called variational

equations: - .
0qg = 0p
5p = —D2V({(t))dg

02V
where DV (q(t)) 1 = (__. ‘__.(@
0q,;0qy; ()

The variational equations are the equations of motion of
the time dependent tangent dynamics Hamiltonian (TDH)
function

Hv (g, 0p; 1) Z5p + = ZD V(1)) 1690

jok=1,2,... N.
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Chaos detection methods

The Lyapunov exponents of a given orbit characterize the mean
exponential rate of divergence of trajectories surrounding it. The 2N
exponents are ordered in pairs of opposite sign numbers and two of
them are 0.

t—>o ¢ ”W(O)”

Following the evolution of k deviation vectors with 2<k<2N, we define
(Skokos et al., 2007, Physica D, 231, 30) the Generalized Alignment
Index (GALI) of order k :

GALL, (t) = [W, () AW, (1) A e A W, (1)

Chaotic motion: GALI, (t) oc 1% k)t Cahk

(constant if 2<Kk<N

Regular motion: GALI, (t)cq 1 :
if N<k<2N

(20N

\
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Symplectic Integration schemes

Formally the solution of the Hamilton equations of motion can be written

as: dX
- = n tLy,
w {HX} L,X = X(1)= n§>0:n [LX=e™X

where X is the full coordinate vector and L, the Poisson operator:

f= Z oH 8f oH of
Lo ap; 04 ; 8qj p;

If the Hamiltonian H can be split into two integrable parts as H=A+B, a
symplectic scheme for integrating the equations of motlon from time t to
time t+71 consists of approximating the operator e by

e‘cLH — eT(LA"'LB ~ I Ieci‘vLAedi‘vLB
i=1

for appropriate values of constants c,, d..
So the dynamics over an integration time step t is described by
a series of successive acts of Hamiltonians A and B.
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Symplectic Integrator SBAB,C

We use a symplectic integration scheme developed for Hamiltonians of the
form H=A+¢B where A, B are both integrable and ¢ a parameter. The
operator e™ " can be approximated by the symplectic integrator (Laskar
& Robutel, Cel. Mech. Dyn. Astr., 2001, 80, 39):

SBAB2 =ed117LEB ecz‘rLA edz‘tLgB ecz‘rLA eleLsB

1 1 2
i C =_,d =_,d =_-
with 2 P 1 6 2 3

The integrator has only positive steps and its error is of order
O(tiettle?).

In the case where A4 is quadratic in the momenta and B depends only on
the positions the method can be improved by introducing a corrector

_ . . . 23.2¢€
C {{A,B}I,B}, having a small negative step: o 1€ ZL{{ A.BL,B)
with ¢=_.

72

Thus the full integrator scheme becomes: SBABC, =C (SBAB,) C and its

error is of order O(t4ct+1ie?).
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Example: Hénon-Heiles system

1 1
H> (p +p)+9( +y)+1y—§‘u
r = Py
Hamilton equations of motion: g =P
Do —x — 2xY
Py = yP—a*—y
(5:13 — (5]);;5?
Variational equations: ?y = Py . ]
op, = —(1+2y)ox — 220y
(5py = —2x0x + (—14 2y)dy

Tangent dynamics Hamiltonian (TDH) :
Hy 0z, 0y, 0p,, 0p,:t) =

N | =

((5})3 + ()pi) +

1 S e - ! - =
+5 {[1 + 2y(1)] Sa? + 11— 2y(t)] ()yz + 2 [22(t)] ();zrf)y}
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Integration of the variational equations

Use any non-symplectic numerical integration algorithm for
the integration of the whole set of equations.

r = P
Yy = Dy
P = —x — 22y
Py = y? —x® —y
oxr = 0p,
5}; = 0p,
op, = —(1+ 2y)dx — 2ady
5.py = —2x0x+ (—1+ 2y)dy

In our study we use the DOP853 integrator, which is an explicit
non-symplectic Runge-Kutta integration scheme of order 8.
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Integration of the TDH

Solve numerically the Hamilton equations of motion by any, ; = p_
symplectic or non-symplectic, integration scheme and obtain y = p,

the time evolution of the reference orbit. Then, use this p, = —x —2zy
numerically known solution for solving the equations of Py = y? —a? —y
motion of the TDH.

E.g. compute x(t,), y(t) at t=iAt, i=0,1,2,..., where At is the integration time
step and approximate the Tangent Dynamics Hamiltonian (TDH) with a
quadratic form having constant coefficients for each time interval [t,, t.+At)

Hyg = 5 (r}pi + Opj) + 5 {11+ 2y(t;)] 6% + [1 — 2y(t;)] 09> + 2 [2z(¢;)] dxdy }

H,,, can be
 integrated by any symplectic integrator (TDHcc method), or

it can be explicitly solved by performing a canonical transformation to new
variables, so that the transformed Hamiltonian becomes a sum of
uncoupled 1D Hamiltonians, whose equations of motion can be integrated
immediately (TDHes method).
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Integration of the TDH

Considering the TDH as a time dependent Hamiltonian we can transform it
to a time independent one having time t as an additional generalized position.

EL«’H(&I--.&E},f,{'ip‘c-.épy-pt) =

[P i
5 (dpi‘ + ﬁpi) + Pt

~/

A

1 o -
+3 {14 2y(#)] 62 + [L — 2y(2)]

Sy? + 2 22(t)] d;r.dy}

~/

B

This new Hamiltonian has one more degree of freedom (extended phase
space) and can be integrated by a symplectic integrator (TDHeps method).

4 O‘Ir'

'T'L . < i.f

Ox + 0p,T
Oy + op, T
t+ 7

0Py

Opy

ox

0y

t

Y —
~ U ~ ,
C:{{A,B},B} f}y -
op. =

eTLC?__, . P
6]); =

opr — {[1 + 2y(t)] o= + 22(t)dy}
Ipy + {—2x(t)dx + [-1 4+ 2y(t)| oy| T
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ox

0y

t

Op. — 2 {4x(t)oy+ ]
+422(t) + (1 + 2y(1))°
5])1,: — 2{4x(t)dx+
+ [427(8) + (1 - 2y(¢))”
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Tangent Map (TM) Method

Use symplectic integration schemes for the whole set of equations.

We apply the SBABC, integrator scheme to the Hénon-Heiles system
(with €=1) by using the splitting:

o, 1, |
A = 5i+p,), B = 5@ +y) +ay - oy,

with a corrector term which correspondg to the Hamiltonian function:

C'={{A,B},B} = (x + 2:1:y)2 + (:1:2 — yQ + y)2

We approximate the dynamics by the act of Hamiltonians A, B and C,

which correspond to the symplectic maps:

(2 = 2+ p,T
- "' = y+p,T
€L4<'}y)f? ]/ ’ flj”:fl
Py, = Dy oL y =y
) ) P = P 2’1(1+‘>7 +6y+9y)
(v =@ Py = Py — 20y —3y° +2y° + 327 + 22%y)T
€TL'B . < y - y
' ") P = pe— (14 2y)T
\ p;; = py+(y* -2y
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Tangent Map (TM) Method

Let i = (2,9, Ds, Py, 0L, 0Y, 0P, ODy,)
The system of the Hamilton equations of motion and the variational equations is
split into two integrable systems which correspond to Hamiltonians A and B.

r = P i
Yy = Py (j y
y =Pk A(p I
Pz L — 1Y >
2 2 %
Py = Y~ — 27—y 5
v = oy
(h = 0ps op,
6y — 6]) Y 6]) Y
op, = —(1+2y)ox — 2xdy
op, = —2xow+ (—1+ 2y)dy
i =0 )
y =0
B( ") Pe = —x— 21y
q ].)_y = 92*372*79 du
dr = 0 = at
oy = 0
op, = —(1 4 2y)dx — 220y
op, = —2xdx + (—1+2y)oy
H. Skokos
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= Pz
= Py
=0
=0
= Op,
0Py
=0
=0

L BV u

N

du
dt

7

= eTLBV .

\

S Lavu

'
!
j
Py
ox’
oy’
op’,
) p_’y

'4 "

T = X+ P.T
yoo=y + Py T
pr’ = p.
PTLAV - 4 py’ = Dy
' ") o2’ = dx+ dp.T
oy’ = dy+ OpyT
op,. = Op.
[ Op), = Opy
T
Y
P — z(1 + 2y)T
Py + (92 —2? — y)’r
ox
oy

O0ps — [(1+ 2y)dx + 22dy| T
Opy + [—2x0x + (—1 4 2y)dy] T
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Tangent Map (TM) Method

So any symplectic integration scheme used for solving the Hamilton
equations of motion, which involves the act of Hamiltonians A, B and C,

can be extended in order

equations.
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to integrate simultaneously the variational

(2 = x4 p.T
Y= ytpyT
' = z+p.T pr’ = p. (2 = =z
A . Py = py ro_
TLa . ) Y Y+ pyT grlav . Q19— 2y Yy Y
R o = 8+ b7 b = pe—o(l+2)r
Dy Pz oy = oy -+ op,T 2 2
;o : 4 v rLpy . ) Py = Pyt (y°—a°—y)T
Py = Py opl, = Opa ¢ ) 0 = ox
[ Opy = Opy dy' = dy
= opl. = Op. — [(1 + 2y)dx + 220y| T
;L ([ Op,, = Op, +[—2zdx + (=1 + 2y)dy|T
E]’."J'_'JJE; y - y '
, '
P, pe — x(1 4 2y)T
r_ 2
Py = Pyt Yy —a” —y)7 -
T
yoo=y _
, pl. = p.—22(1+ 22% + 6y + 2y°)7
Lo Py = py—2(y—3y* +2y° + 327 + 22%y)T
E)TLC . o= : ‘ / eTLev T4 f?.??: - f?-'?’
) P = e 220(1 4 227 + 6y + 29°)T S, = Goe —2[(14 622 4 247 4 )5
, _ B B ) 3 ) 2 0p, = 0pz — 2 [(1 + 62° + 2y= + 6y)ox+
Py Py 2(y — 3y~ +2y” + 327 + 227y)7 +22(3 + 2y)oy| T
op, = 0p, —2 [‘23?(3 + ‘Qy)()";r—t—
| +(1+ 222 + 6y% — 6y)dy| 7
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Application: Hénon-Heiles system

For H,=0.125 we consider a regular and a chaotic orbit

04
< O0F
0.4
y
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Integration step, T = 0.05. Relative energy error = 1019 — 10-3
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Summary

e We presented and compared different integration schemes for the
variational equations of autonomous Hamilonian systems.

 Non-symplectic schemes, like the DOP8353 integrator, are very reliable
and reproduce correctly the behavior of the LCEs and GALISs,
although they require relative large CPU times.

e Techniques based on the previous knowledge of the orbit’s evolution
(TDHcc, TDHes, TDHeps) have a rather poor numerical performance:
they can overestimate the mLCE of chaotic orbits, while regular orbits
could be characterized as slightly chaotic.

e Tangent map (TM) method: Symplectic integrators can be used for
the simultaneous integration of the Hamilton equations of motion and
the variational equations.

v They reproduce accurately the properties of the LCEs and GALIs.

v" These algorithms have better performance than non-symplectic
schemes in CPU time requirements. This characteristic is of great
importance especially for high dimensional systems.
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