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Autonomous Hamiltonian systemsAutonomous Hamiltonian systems
Consider an N degree of freedom autonomous 
Hamiltonian system having a Hamiltonian function of the 
form:

The time evolution of an orbit is governed by the 
Hamilton equations of motion

with
being respectively the coordinates and momenta.



H. Skokos 8th AIMS Conference – Special Session 03
Dresden, Germany - 25 May 2010

4

Variational EquationsVariational Equations
The time evolution of a deviation vector

from a given orbit is governed by the so-called variational 
equations:

where

The variational equations are the equations of motion of 
the time dependent tangent dynamics Hamiltonian (TDH)
function
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Chaos detection methodsChaos detection methods

→∞1λ
t

w(t)1
mLCE = = lim ln

t w(0)

The Lyapunov exponents of a given orbit characterize the mean 
exponential rate of divergence of trajectories surrounding it. The 2N 
exponents are ordered in pairs of opposite sign numbers and two of 
them are 0.

λ1=0 Æ Regular motion
λ1π0 Æ Chaotic motion

Following the evolution of k deviation vectors with 2≤k≤2N, we define
(Skokos et al., 2007, Physica D, 231, 30) the Generalized Alignment 
Index (GALI) of order k :

ˆ ˆ ˆ∧ ∧ ∧k 1 2 kGALI (t) = w (t)  w (t)  ...  w (t)

≤ ≤⎧
⎪
⎨

≤⎪⎩
k

2(k-N)

constant if 2 k N
GALI (t)  1 if N < k 2N

t
∝

[ ]1 2 1 3 1 k- (λ -λ )+(λ -λ )+...+(λ -λ ) t
kGALI (t)  e∝Chaotic motion: 

Regular motion:
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Symplectic Integration schemesSymplectic Integration schemes
Formally the solution of the Hamilton equations of motion can be written 
as:

where     is the full coordinate vector and LH the Poisson operator:X
⎧ ⎫∂ ∂ ∂ ∂⎪ ⎪
⎨ ⎬∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭

∑
N

H
j=1 j j j j

H f H fL f = -
p q q p

{ }
≥

⇒ ∑ H

n
tLn

H H
n 0

dX t= H, X = L X  X(t) = L X = e X
dt n!

≈∏H A B i A i B

j
τL τ(L +L ) c τL d τL

i=1

e = e e e

If the Hamiltonian H can be split into two integrable parts as H=A+B, a 
symplectic scheme for integrating the equations of motion from time t to 
time t+τ consists of approximating the operator           byHτLe

for appropriate values of constants ci, di. 
So the dynamics over an integration time step τ is described by 

a series of successive acts of Hamiltonians A and B.
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Symplectic Integrator SBASymplectic Integrator SBAΒΒ22CC
We use a symplectic integration scheme developed for Hamiltonians of the 
form H=A+εB where A, B are both integrable and ε a parameter. The 
operator         can be approximated by the symplectic integrator (Laskar 
& Robutel, Cel. Mech. Dyn. Astr., 2001, 80, 39):

HτLe

1 εB 2 εB 1 εB2 A 2 Ad τL d τL d τLc τL c τL
2SBAB = e  e  e  e  e

with .2 1 2
1 1 2c = ,  d = , d =  
2 6 3

The integrator has only positive steps and its error is of order 
O(τ4ε+τ2ε2).
In the case where A is quadratic in the momenta and B depends only on 
the positions the method can be improved by introducing a corrector 
C={{A,B},B}, having a small negative step: { }{ }

3 2
A,B ,B

c-τ ε L
2e

with
Thus the full integrator scheme becomes: SBABC2 = C (SBAB2) C and its
error is of order O(τ4ε+τ4ε2).

1c = .
72
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Example: Example: HHéénonnon--HeilesHeiles systemsystem

Hamilton equations of motion:

Variational equations:

Tangent dynamics Hamiltonian (TDH) :
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Integration of the variational equationsIntegration of the variational equations
Use any non-symplectic numerical integration algorithm for 
the integration of the whole set of equations.

In our study we use the DOP853 integrator, which is an explicit 
non-symplectic Runge-Kutta integration scheme of order 8.



H. Skokos 8th AIMS Conference – Special Session 03
Dresden, Germany - 25 May 2010

10

Integration of the Integration of the TDHTDH
Solve numerically the Hamilton equations of motion by any, 
symplectic or non-symplectic, integration scheme and obtain 
the time evolution of the reference orbit. Then, use this 
numerically known solution for solving the equations of 
motion of the TDH.
E.g. compute x(ti), y(ti) at ti=iΔt, i=0,1,2,…, where Δt is the integration time 
step and approximate the Tangent Dynamics Hamiltonian (TDH) with a 
quadratic form having constant coefficients for each time interval [ti, ti+Δt)

HVH can be 
• integrated by any symplectic integrator (TDHcc method), or
• it can be explicitly solved by performing a canonical transformation to new 

variables, so that the transformed Hamiltonian becomes a sum of 
uncoupled 1D Hamiltonians, whose equations of motion can be integrated 
immediately (TDHes method).
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Integration of the Integration of the TDHTDH
Considering the TDH as a time dependent Hamiltonian we can transform it 
to a time independent one having time t as an additional generalized position.

This new Hamiltonian has one more degree of freedom (extended phase 
space) and can be integrated by a symplectic integrator (TDHeps method).

A

B

{ }{ }C= A,B ,B
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Tangent Map (TM) MethodTangent Map (TM) Method
We apply the SBABC2 integrator scheme to the Hénon-Heiles system 
(with ε=1) by using the splitting:

with a corrector term which corresponds to the Hamiltonian function:

Use symplectic integration schemes for the whole set of equations. 

We approximate the dynamics by the act of Hamiltonians A, B and C, 
which correspond to the symplectic maps:
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Tangent Map (TM) MethodTangent Map (TM) Method
The system of the Hamilton equations of motion and the variational equations is 
split into two integrable systems which correspond to Hamiltonians A and B.

Let
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Tangent Map (TM) MethodTangent Map (TM) Method
So any symplectic integration scheme used for solving the Hamilton 
equations of motion, which involves the act of Hamiltonians A, B and C, 
can be extended in order to integrate simultaneously the variational 
equations.
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Application: Application: HHéénonnon--HeilesHeiles systemsystem
For H2=0.125 we consider a regular and a chaotic orbit
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Regular orbitRegular orbit
Integration step, τ = 0.05. Relative energy error ≈ 10-10 – 10-8

CPU times ≈ 15 h             6h               6h 6h 5h 
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Chaotic orbitChaotic orbit
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Slightly chaotic orbitSlightly chaotic orbit
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SummarySummary
• We presented and compared different integration schemes for the 

variational equations of autonomous Hamilonian systems.
• Non-symplectic schemes, like the DOP853 integrator, are very reliable 

and reproduce correctly the behavior of the LCEs and GALIs,
although they require relative large CPU times.

• Techniques based on the previous knowledge of the orbit’s evolution 
(TDHcc, TDHes, TDHeps) have a rather poor numerical performance:
they can overestimate the mLCE of chaotic orbits, while regular orbits 
could be characterized as slightly chaotic.

• Tangent map (TM) method: Symplectic integrators can be used for 
the simultaneous integration of the Hamilton equations of motion and 
the variational equations.

They reproduce accurately the properties of the LCEs and GALIs.
These algorithms have better performance than non-symplectic
schemes in CPU time requirements. This characteristic is of great 
importance especially for high dimensional systems. 


